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Abstract
The probability distribution of percolation thresholds in finite lattices was first
believed to follow a normal Gaussian behaviour. With increasing computer
power and more efficient simulational techniques, this belief turned to a
stretched exponential behaviour, instead. Here, based on a further improvement
of the Monte Carlo data, we show evidence on square lattices that this question
is numerically not yet answered at all.

PACS numbers: 02.70.−c, 05.10.Ln, 64.60.Ak, 05.70.Jk

1. Introduction

In [1], the percolation on an N-site square lattice is treated with high numerical accuracy.
Indeed, the best known estimate for the critical threshold, pc = 0.592 746 21(13), comes from
this work. In order to study this kind of problem, the authors follow a very fruitful Monte
Carlo approach which allows one to obtain continuous functions of p, the concentration of
occupied sites, namely the canonical-like average

R(p) =
∑

n

Cn
Npn(1 − p)N−nRn (1)

of some quantity R. Here, Rn is a uniform average over all configurations with just n occupied
sites, i.e. a microcanonical-like average. Cn

N = (
N

n

)
are the binomial factors. By filling the

initially empty lattice, site by site at random, and repeating this process many times, one is
able to get the discrete set of microcanonical averages Rn accumulated into an n-histogram,
over the entire range, n = 0, 1, 2, . . . , N. From this set of numbers, the determination of the
continuous p-function R(p) is straightforward.

In particular, the authors of [1] fix attention on the horizontal wrapping probability RL(p)

around an L×L torus, i.e. a square lattice with periodic boundary conditions on both directions.
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Figure 1. Spanning probability function for a fixed lattice size (L = 18, left curve). For larger
and larger sizes (L = 22 and 26, from left to right), this function approaches a step. By fixing
some value r at the vertical axis, one can find a sequence of values pL(r) at the horizontal axis
approaching the critical threshold pc , for increasing lattice sizes.

In the thermodynamic limit, this function approaches a step: R∞(p) = 0 below the critical
threshold pc, and R∞(p) = 1 above pc. For finite sizes, RL(p) presents a sigmoid aspect
similar to figure 1. A good approach to pc is to choose some fixed value r, and solve the
equation RL(p) = r , getting the root p shown at the horizontal axis. Here, one can appreciate
the advantage of knowing RL(p) as a continuous function of p. Keeping the same value r and
repeating this task for a series of increasing lattice sizes (dotted lines), one gets a series of roots
pL1(r), pL2(r), pL3(r), · · · which converges to the desired threshold pc in the thermodynamic
limit.

The above reasoning is valid no matter which fixed value for r one chooses. However, for
the very particular choice r∗ = 0.521 058 290, a universal probability exactly known through
conformal invariance arguments [2], the convergence becomes fast, i.e. the root p(L) differs
from pc as L−2−1/ν = L−2.75, where ν = 4/3 is the correlation length critical exponent. The
above quoted accurate value for pc was obtained in this way. For details, see [1] and references
therein. For large L and p close to the percolation threshold pc one expects [3] the scaling
form

RL(p) = f [(p − pc)L
1/ν].

Reference [4] proposes the mathematical form

pL(r) = pc +
1

L1/ν

[
A0(r) +

A1(r)

L
+

A2(r)

L2
+ · · ·

]
(2)

for estimators pL obtained from quantities such as R(p). The option for the wrapping
probabilities around the torus and the convenient choice of Pinson’s number r = r∗ lead to
vanishing values for the first two terms A0(r

∗) = A1(r
∗) = 0, a lucky coincidence which

accelerates the convergence very much.
The quantity RL(p) is obtained, as quoted before, by filling up the initially empty lattice

site by site, at random. Clusters of neighbouring occupied sites grow. As soon as the horizontal
wrapping along the torus is set, one books the corresponding value of n, the number of occupied
sites so far, and stops the process. For that particular sample, the wrapping probability RL is
a step function, i.e. RL = 0 below n and RL = 1 above. The same routine is repeated many
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times, in order to have a probability distribution for n. The various step functions are then
superimposed to get the microcanonical averages Rn in equation (1), stored in an n-histogram.
Finally, the continuous canonical average RL(p) can be calculated for any value of p.

Each process of filling up the lattice (one sample) yields a single value n for the statistics,
i.e. just one more entry on the n-histogram. In [4], we decided to improve this point, by
changing the definition from wrapping to spanning probability (figure 1). We fix two parallel
horizontal lines on the L×L torus, separated by a distance of L/2, for instance lines i = 1 and
i = 1+L/2. The measured quantity is now the probability of having these two lines connected
by the same cluster of neighbouring occupied sites, instead of the wrapping probability along
the whole torus. The advantage is that we can measure the same thing for lines i = 2 and
i = 2 + L/2, for lines i = 3 and i = 3 + L/2, and so on. Moreover, vertical parallel lines can
also be included in this counting. At the end, from a single sample we store L new entries into
our n-histogram, instead of just one more entry. Note that this advantage even increases for
larger and larger lattices.

Within the same computational effort, our approach allows the test of larger lattices.
Because of that, we were able to confirm the validity of equation (2) with high precision,
by sampling 27 different lattice sizes from L = 18 up to L = 1594, an eight-thousand
factor in the number of sites. On the other hand, our definition does not allow the chance
of both A0(r) and A1(r) vanishing at once. We can have only A0(r̂) = 0, for a particular
universal probability r̂ = 0.984 786(11) numerically determined within the same work [4].
Independently, Cardy [5] tried to determine it by conformal invariance arguments; however,
in looking for configurations which link two parallel lines, he was forced to disregard
configurations which also wrap along the other direction. As a result of using larger lattices but
a slower convergence rate of L−1−1/ν = L−1.75, we get the same value pc = 0.592 746 21(33)

[4] as in [1], but with a three times larger error bar. We used about two years of total CPU time
on several independent Athlon processors; error bars were estimated by dividing the whole
data set into, say, ten independent subsets.

2. The tails

The non-Gaussian behaviour of the finite-lattice-threshold distribution near the infinite-lattice
critical point is already established4 [6]. Here, we profit from the same simulational
data in order to investigate the distribution tails, far from the critical point, i.e. for large
|p − pc|L1/ν . Which is the mathematical form of the tail observed in figure 1, below the
root p? One possible answer is a simple Gaussian form [3, 7]

RL(p) ∼ exp[−K(p − pc)
2]. (3)

Another alternative is a stretched exponential [8–11]

RL(p) = exp[−C(pc − p)ν] (4)

where the strict equality (for large (pc − p)L1/ν) is a consequence of the periodic boundary
condition [1] which holds for our data. Profiting from this strict equality, one can test
equation (4) by constructing a plot of ln[− ln(R)] against ln(pc − p). This was done in [1],
and we repeat the same for our data, in figure 2. Note that our range for ln(pc − p) (up to
−3.4 for L ∼ 103) is larger than in [1] (up to −4.6 for the same size). This means that we
are testing more deeply the distribution tails, thanks to our trick of sampling L new entries
for each run. Even so, the conclusion in favour of either equation (3) or (4) is by no means
obvious. Note a further difficulty concerning equation (3), because the leading multiplicative
constant in front of the exponential is not necessarily 1.
4 This point was not yet realized in [5], but was corrected in the 1994 reprint.
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Figure 2. Test of equations (3) or (4), for tails on the left of figure 1. The five continuous curves
correspond to L = 1594, 1354, 1126, 958 and 802, from left to right. In each case we sampled
4 million statistically independent lattice-filling processes, which correspond to 6, 5, 5, 4 and
3 ×109 entries in each n-histogram, respectively. The statistics is improved by a factor above
1000, compared to [1] for equivalent lattice sizes. The dashed lines show the alternative slopes 2
(right) or 4/3 (left). In the authors’ opinion, no definitive conclusion is possible. Smaller L, with
109 lattices filled, are not shown.
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Figure 3. Alternative test of equations (3) or (4), for the same lattice sizes L = 1594, 1354, 1126,
958 and 802, from left to right.

Another, perhaps better way to address the same question is by plotting ln(R) twice,
against (p − pc)

2 and (pc − p)4/3. Figure 3 shows the result for our data. Note that our
range for ln(R) (down to −16) doubles the one presented in [1]. The would-be Gaussian case
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Figure 4. Spanning probability function 〈r2〉 (alternative to 〈r1〉 repeated from figure 1), where
connection between two perpendicular pairs of lines is required (instead of just one pair). Here,
L = 18 for both plots.

(up) presents clear positive curvatures, whereas the would-be stretched exponential (down)
presents negative curvatures, although not so pronounced. The exponent 4/3 seems to fit
better, but one cannot extract a clear conclusion from these data.

Still more undefined is the situation of the other tails on the right of figure 1, above pc. In
this case (not shown), our accuracy limit for ln(1 − R) (down to −16) is reached much closer
to pc than the case shown in figures 2 and 3, below pc.

Concluding, we present new Monte Carlo data concerning the probability distribution of
percolation thresholds on a finite square lattice. We address the question of the mathematical
form of the distribution tails, equation (3) against (4). Even considering that our statistics is
more than 1000 times larger than previous works, no definitive conclusion can be extracted
from our data, as far as the asymptotic tail exponent is concerned.
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Appendix

The spanning probability shown in figure 1 corresponds to two parallel lines separated by a
distance of L/2, along the L × L torus. For each lattice filling-up process, we jump from
0 to 1 as soon as these lines become connected. Let us call this function r1 (figure 1 shows
in fact its average 〈r1〉 over many lattice filling-up processes). Consider now another pair of
lines, perpendicular to the first pair, also separated by a distance of L/2. Another spanning
probability r2 can be defined: we jump from 0 to 1 a little later than for r1, namely as soon
as the second pair of lines also becomes connected. The resulting plot is shown in figure 4,
for L = 18.

The same procedure described in the caption to figure 1 can be applied to r2 in order to
get the threshold concentration pc. In this case, the universal value r̂2 is a little bit smaller
than r̂1 = 0.984 786(11) [4], valid for r1.

A third alternative definition is to jump from 0 to 1 as soon as the first pair of lines
becomes connected, jumping back from 1 to 0 as soon as the second pair of lines also becomes
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connected. Let us call the corresponding function r3. Instead of the sigmoid aspect of 〈r1〉
and 〈r2〉, the average 〈r3〉 would present a peak for some concentration in between 0 and 1,
going to 0 in both these limits. The larger the lattice size, the narrower this peak, and its
position approaches pc. For L → ∞, 〈r3〉 vanishes for all concentrations except pc, where
its value is a third universal constant r̂3. Thus, one can obtain pc with no need to know any
universal value r̂ , just by extrapolating the successive peak positions of 〈r3〉, for larger and
larger lattices. These functions are obviously related by

〈r3〉 = 〈r1(1 − r2)〉.
Unfortunately, we have not stored data for r2 or r3 within our big runs for 27 different

lattice sizes from L = 18 up to L = 1594. However, we can adopt the approximation

〈r1〉 = 〈r2〉 + C

supposed to be valid for large enough lattices, where C is a constant, based on the following
reasoning. At the thermodynamic limit L → ∞, both 〈r1〉 and 〈r2〉 are step functions,
〈r1〉 = 〈r2〉 = 0 below pc, whereas 〈r1〉 = 〈r2〉 = 1 above. At pc, however, one has
〈r1〉 = r̂1 = 0.984 786(11) and 〈r2〉 = r̂2, both universal values.

Indeed, inspired by the comments of the referees who asked for some further numerical
evidence in favour of our method, we determined 〈r2〉 for L = 18, 22, 26, 30, 38, 46, 52 and
62, as functions of p, by new simulations within the same statistics, namely 109 samples for
each size, with the further factor due to the different positions of the parallel lines (in this case
L2/4, better yet than simply L for r1). In all cases, the maximum difference 〈r1〉 − 〈r2〉 is
approximately the same, near C ≈ 0.19.

Now, by combining the last two equations, we can approximate 〈r3〉 further by

〈r3〉 = (1 + C)〈r1〉 − 〈
r2

1

〉
.

Note that, now, we need only data for r1, the same we have already for all 27 different lattice
sizes, obtained from our original big runs. By determining the peak positions pL of this 〈r3〉
(above equation), and applying the mathematical form (2) for them, we can obtain pc for
different choices of the constant C. Indeed, the goodness-of-fit Q (see [4]) is very bad, unless
we choose C very close to 0.19. In particular, we get pc = 0.592 746 18(61) and Q = 0.73,
in complete agreement with [1, 4], for C = 0.19 with four terms in equation (2). Similar
results were obtained for other values of C near 0.19. We believe the error bar can be much
smaller than that, by computing 〈r3〉 directly for all lattice sizes, without the approximations
made here.
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